Select Operation over RCAN

Jimwoo Kim

Dept of Computer Science

University of Southern California
ABSTRACT

As a distributed network, CAN – Content-Addressable Network [1] – provides greatly scalability and is decentralized and self-organizing in its nature. Considering the exploding increase rate of data size nowadays, CAN can be used as an infrastructure on top of which a distributed relational database can be built. However, CAN only provides exact query facility. This paper describes the scheme that addresses this issue and supports a subset of query language,
a range-select operation over a CAN-like network. We use the term Relational Content-Addressable Network to describe such an infrastructure.

1. INTRODUCTION
For RCAN to be efficient in query operations, data needs to be placed in CAN nodes intelligently so that only a subset of nodes contains the data. Then a query can be executed only on these relevant nodes. To facilitate this data placement, we use the concept introduced in Multi Attribute GrId deClustering (MAGIC) [2] to build a virtual coordinate space where each dimension represents an attribute of a relation.

We describe our design for a select operation over RCAN in section 2 where we also address issues in occurrence of node removal and node failure; in section 3 we present an algorithm for a range-select operation over RCAN.

 2. DESIGN

RCAN is essentially a virtual d-dimensional coordinate space where the Multi Attribute GrId deClustering (MAGIC) concept is applied to a Content-Addressable Network. This coordinate space is totally logic. The entire coordinate space is partitioned among all the nodes in the system such that every node in RCAN has its own distinct zone within the overall space. Each node contains a portion of the data of a relation database.

2.1 Data placement
Multi Attribute GrId deClustering (MAGIC) partitions a relation by constructing a grid directory on a relation where each entry in the grid represents a node containing a fragment of the relation. This grid directory forms RCAN. Each dimension of RCAN corresponds to one attribute of a relation in a relational database. If a relation has d attributes, then the data of this relation is distributed in a d-dimension RCAN. When there are multiple relations in the database, all nodes take part into multiple logical RCAN networks, where one for each relation of the database.

Figure 1 shows an example of a 2-dimention RCAN coordinate space partitioned between 16 nodes. Here we use a number to denote both the zone and the node responsible for that zone. Given a range-select query like: select * from R where a<Location<m and 60<Age<80, only node 13 is responsible for the corresponding zone and needs to be accessed for query data, thus reducing the searching cost otherwise occurred in a randomly distributed network.

[image: image1.wmf]SMALL Database

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

10

20

30

40

50

60

Client #

Response Time(ms)

RT-0 Node=49

RT-1 Node=49

RT-0 Node=100

RT-1 Node=100

RT-0 Node=196

RT-1 Node=196

[image: image2.wmf]BIG Database

0

5000

10000

15000

20000

25000

0

10

20

30

40

50

60

Client #

Response Time(ms)

RT-0 Node=49

RT-1 Node=49

RT-0 Node=100

RT-1 Node=100

RT-0 Node=196

RT-1 Node=196

 Location

 Location

[image: image3.wmf]SMALL Database

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

Client #

WIPS

WIPS-0 Node=49

WIPS-1 Node=49

WIPS-0 Node=100

WIPS-1 Node=100

WIPS-0 Node=196

WIPS-1 Node=196

MaxRange

MinRange

[image: image4.wmf]BIG Database

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

Client #

WIPS

WIPS-0 Node=49

WIPS-1 Node=49

WIPS-0 Node=100

WIPS-1 Node=100

WIPS-0 Node=196

WIPS-1 Node=196

MaxRange

MinRange

[image: image5.wmf]BIG Database

0

5000

10000

15000

20000

25000

0

10

20

30

40

50

60

Client #

Response Time(ms)

RT-0 Node=49

RT-1 Node=49

RT-0 Node=100

RT-1 Node=100

RT-0 Node=196

RT-1 Node=196

	1
	2
	3
	4

	5
	6
	7
	8

	9
	10
	11
	12

	13
	14
	15
	16

	[image: image6.png]Remote Browser

Emuiators Web System Under
Sorvor Test
reE Web
Servor
Web Switch
RBE Server Switeh
Web
Sorvar Database
reE Servar
Wen
Switch [cache
reE
e
Cacho
reE
image
Sorvor
image
Paymont Sorvor
Gatoway

[image: image7.wmf]SMALL Database

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

10

20

30

40

50

60

Client #

Response Time(ms)

RT-0 Node=49

RT-1 Node=49

RT-0 Node=100

RT-1 Node=100

RT-0 Node=196

RT-1 Node=196

	[image: image8.wmf]SMALL Database

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

Client #

WIPS

WIPS-0 Node=49

WIPS-1 Node=49

WIPS-0 Node=100

WIPS-1 Node=100

WIPS-0 Node=196

WIPS-1 Node=196

MaxRange

MinRange

	[image: image9.wmf]BIG Database

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

Client #

WIPS

WIPS-0 Node=49

WIPS-1 Node=49

WIPS-0 Node=100

WIPS-1 Node=100

WIPS-0 Node=196

WIPS-1 Node=196

MaxRange

MinRange

	

	
	
	
	

	
	
	 S
	

	
	
	
	D

 Age

Age

 select * from R where h<location<k and 15<age<55

Figure 1: Example 2-d RCAN with 16 nodes
 Figure 2: Example of a select query

2.1 Select query
A select query in a RCAN works by passing the query message from one node to its neighbors that are relevant nodes for this query, each such node executing the select query and returning the query result to the client node.

A RCAN node maintains a coordinate table that holds the IP address and virtual coordinate zone of each of its immediate neighbors in the coordinate space. Select query starts by the client sending a message including its IP address and the select query to any existing RCAN node D. This node uses the CAN routing mechanism and the query predicates to forward the message until it reaches a node S whose coordinate zone the predicates falls in. We call this node the start node. Then the rest of the process is to flood the message to all relevant nodes in RCAN.

Before we get in to a specific flooding mechanism, let’s see what an “effective range” means in RCAN. The effective range of a node is the range that the node covers over a query range.

Here is an example that illustrates the effective range of a node and the total effective range of a select query.

Example:
select * from R where age < 55 and height < 3

 age

 0 20 40 55 60 ∞

	
	E
	
	

	
	
	D
	

	
	
	
	

	
	
	
	

height

· Effective range of node D is 40 < age < 55 and 2 < height < 3

· Effective range of node E is 20 < age < 40 and 0 < height < 2

· Total query range is 0 < age < 55 and 0 < height < 3

start coordinate

 1st dimension

	0
	
	1
	2
	
	3

	0
	
	
	
	

	
	
	
	
	

	
	1
	
	
	

	2
	
	

	
	
	

Figure 3: example of parent in 1-d

Figure 4: example of parent in 2-d

In what follows, we propose two message-flooding mechanisms, namely Multicast Flooding and Non-Redundant Message Flooding.

Multicast Flooding (MF)

Multicast Flooding addresses the situation where a node might be busy or idle for a period of time. It nicely avoids waiting and therefore increases efficiency.

The start node passes the query message to each of its neighbor nodes as long as the neighbor contains the query data, which can be easily detected by merely comparing the neighbor zone to the query range. If the neighbor zone is part of the query range or if it overlaps with the query range, this neighbor node is one of the qualified nodes and it should receive the query message. After receiving the query message, this node executes the query and sends the result directly back to the client. Each such relevant RCAN node also sends out the query message to its neighbors in the same manner, and each receiving node repeats this process such that each of the relevant nodes executes the query and sends the result back to the client. To reduce the redundancy in message passing and query execution, a node only executes a new query that it receives and only forwards a new query message to its qualified neighbors except the one from which it received the message. Figure 2 shows an example of such process.

In such a flooding mechanism, since a node may receive more than one message from it’s multiple neighbors, if a neighbor is busy or idle for a period of time, the node can still receive the message from another neighbor, which essentially avoids possible delays. On the other hand, because of the multiple messages that a node may receive, redundant messages exist.

Non-Redundant Message Flooding (NRMF)

This mechanism offers a message flooding mechanism that eliminates the redundant messages in the flooding process. Each of the query relevant nodes in RCAN receives exactly one query message if no node split, node removal, or node failure occurs.

In a d-dimension RCAN, we say two nodes are neighbors in i dimension if their coordinate spans overlap along d-1 dimensions and abut along only i dimension. For example, in Figure 1, lets say, location is the 1st dimension and age is the 2nd dimension, then node 11 and node 15 are neighbors in the 2nd dimension because their coordinate spans overlap along the 1st dimension and abuts along the 2nd dimension.

To assist in our explanation of Non-Redundant Message Flooding mechanism, we introduce another concept – parent and child. Each node in a d-dimension RCAN has a start coordinate and an end coordinate in i dimension, which constitutes the two end points of the node’s coordinate span in i dimension. Considering the effective query range over a node, we apply the same concept here and we get the start coordinate and the end coordinate of the effective query range over a node in each dimension. Let’s call it the effective start coordinate and the effective end coordinate. Figure 3 shows a 1-dimension RCAN, where we define two neighbor nodes automatically have this parent-child relationship. In a d-dimension RCAN, if two nodes, N1 and N2, are neighbors in i dimension, we say N1 is the parent of N2 in i-dimension if and only if, in each of the d dimensions, N1’s start coordinate is no greater than N2’s start coordinate. For example, in Figure 4, node 2’s parent in 2nd dimension is node 1, not node 0, because node 1 and node 2 are neighbors in the 2nd dimension and the effective start coordinates in two dimensions of node 1 are no greater than those of node 2. Obviously, this concept ensures each node has a unique parent except the start node, which does not have a parent.

Now, we describe how Non-Redundant Message Flooding works in a d-dimension RCAN. Here we refer a query relevant node as a node for short. Given a query, intuitively, NRMF works by starting from a start node that is the one that has the smallest effective starting coordinates in all dimensions compared to other nodes. This start node sends out the query message as well as dimension i to its’ children in i dimensions, where i = 1, 2, 3, …, d. A child node in k-dimension that receives the message sends outs the message and dimension i to its’ children in i dimensions, where i = k, k+1, k+2, …, d. The process repeats until each relevant node is visited. One can envision this process as building up a spanning tree in the RCAN network graph. And this tree is built up using purely local information. By spreading messages along this tree, NRMF guarantees no message redundancy
The drawback of this flooding mechanism shows in the delay that occurs when a node is busy or idle. In this case, since a node has only one parent node, if this parent is busy or idle, this child node will not receive the query message until the parent node resumes to normal. Also, since the message flooding is direction oriented, the starting node has to be the one that lies in at the corner of the query range.

2.2 Query termination
In both Multicast Flooding and Non-Redundant Message Flooding, when a node returns its query result to the client, it also returns its effective range to the client. Client keeps track of each received effective range. Since the client knows the total query range, when it detects the total of each effective range received reaches the total query range, the query is considered complete and successful.

One way to calculate an effective range value in an n-dimension coordinate space is to take the product of each effective coordinate span of each zone. In general, if a select query on a relation with n attributes is as follows:

SELECT * FROM R WHERE starti < A[i] < endi and startj < A[j] < endj

The query range value for a node is calculated as: d1*d2*…*(endi-starti)*…*(endj-startj)*…*dn, where di = endi-starti, i =1…n, is the effective coordinate span in i dimension. The total effective range value is calculated in a similar manner over the total effective range.

2.3 Node departure, failure, busy, idle, split, merge

When a node leaves a RCAN, the underlying CAN network ensures that one of departure node’s neighbors takes over the zone and its data. Query operation is not interfered in any way.

When a node fails, its zone is taken over by one of its neighbor. We assume a replica of its data exists in one of its neighbor nodes. Query is executed as normal without interruption.

In the case of node busy, with Multicast Flooding, where a node sends the query message to all of its neighbors except the node from which it received the message. This message flooding mechanism ensures the query message gets to the rest of the relevant nodes. A time out is

 Q1
Q2 arrives before split

 Q1

Q2 arrives after merge

	1
	2

	3
	4

	1
	2

	3
	4

Figure 5: node split

 Figure 6: node split

implemented at the client. If the client does not receive the total query range in a time limit, the query result is considered incomplete with a message indicating this. With Non-Redundant Message Flooding, a child node has to wait till its’ busy or idle parent node resumes to normal.

In a streaming enabled environment, there might be a situation where a node executes the query and sends a portion of the query result back to client, and then it becomes idle. Later on, within the client’s timeout, the node resumes to its normal condition and execute the query. In such a case, the client discards any duplicated data that it receives.

With Multicast Flooding, node split and node merge will not affect the select query operation because of, again, its’ nature of multicast.

With Non-Redundant Message Flooding, special situations as follows could exist. In Figure 5, if node 2 receives query message Q2 early and finished checking that the shaded area is not its child before the shaded area is split into node 3 and node 4, then node 4 will not receive any query message since node only forwards the message to node3. Similar situation exists in node merge. Figure 6 shows a case where node 3 and node 4 merge into one node. Before this change gets updated in node 2, node 2 decides to forward the message Q2 to node 4 since node 4 was node 2’s child. Therefore, redundant message is introduced. A possible solution to these problems is to let the new node, either the split one or the merged one, continuously inform its neighbors about its new status for a period of time, such as 10 seconds. Each node maintains a message history table (MHT) that is used to eliminate forwarding a message more than once. A MHT contains a collection of message Ids and query ranges. When node N1 is split into node N1 and node N2, N2 inherits N1’s MHT.
When N1 and N2 are merged to one node N1, the MTH1 of node N1 becomes: only(MHT1) U only(MHT2) U (MHT1 ∩ MHT2).
3. ALGORITHM

This section describes the Multicast Flooding algorithm and Non-Redundant Message Flooding algorithm for select operation in RCAN:

Steps with Client

Client sends its IP and a select query to a randomly chosen node D in RCAN;

Node D identifies the startNode based on query predicates by routing using CAN;

Node D sends select query, queryID, client’s IP to startNode;

Client initializes resultRange = 0 and listens for incoming messages within a time limit;

For each received query result and effective range

If result is not duplicated

 resultRange += effective range;

If (resultRange ! = total query range) then

Output result with a message indicating “Result incomplete”;

Else

Output result with a message indicating “Result complete”;

Steps with each relevant node thisNode (including the startNode)

· Multicast Flooding algorithm
thisNode listens for incoming message;

crop thisNode against query range and get its’ effective range;

For each received query message

If queryID is new to thisNode then

thisNode saves queryID in a list;

Get all neighborNodes of thisNode;

For each neighborNodes[i]

If (neighborNodes[i] ! = thisNode && effective range > 0)

thisNode sends query, queryID, client’s IP to neighborNodes[i];

thisNode executes select query;

thisNode sends query result and thisNode’s effective range to client;

· Non-Redundant Message Flooding algorithm

thisNode receives an incoming message containing query range and dimension value dim;

crop thisNode against query range and get its’ effective range;

For each neighborNodes[i]

If (thisNode and neighborNodes[i] are neighbors in k-dimension && k >= dim)

Get effective range of neighborNodes[i];

If (effective range of neighborNodes[i] > 0 &&

 thisNode is the parent of neighborNodes[i] in k-dimension)

thisNode sends query, queryID, k, client’s IP to neighborNodes[i];

thisNode executes select query;

thisNode sends query result and thisNode’s effective range to client;

4. Experimental Results

In this section we present results obtained from running simulations of the RCAN design. We start with an overview of the experiments we used to evaluate our design. We then present basic response time results using Multicast Flooding method and Non-Redundant Message Flooding method..

To determine the capacity of the system, we ran simulations with increasing request rates until the measured response times started rising noticeably. We applied a threshold to the

observed service times, calling runs with average service latencies
We are in the stage of implementing and simulating the two algorithms for selection operations over RCAN network. Via this evaluation, we are hoping we can compare the two
alternatives in both the latency and the throughput.

4.1 Experimental Overview
Our experiments used TPC-W with an event simulator. Simulation was done on a single physical computer. Before getting into the experimental details, lets describe the terms we use. RBE emulates users using web browsers to request services from the SUT i.e the clients in the system. Web Interactions Per Second is used to refer to the average number of Web Interactions per second completed during the browsing interval. Think Time refers to the time elapsed from the last byte received by the EB to complete a web interaction until the first byte sent by the EB to request the next web interaction.

Figure 7: Overview

Figure 8: Transfer Time

Figure 9: Execution Time
Figure 10: Relations in experiments
Our experiments were based on the following assumptions:

· Think time = 7 seconds
· Message size = SIMPLE_MSG | small | medium | big
· CPU speed = low | high
· Data size = small | medium | big
· N/w speed = 1Mbps | 10 Mbps | 100Mbps
The following chats show the response time results and WIPS measured. Results were obtained from running the simulation under various conditions, such as small database, big database, various numbers of clients and various number of nodes.

5. REFERENCES

[1] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker, A Scalable Content-Addressable Network, In Proceedings of ACM SIGCOMM, August 2001.
[2] Shahram Ghandeharizadeh, David J. Dewitt, A Performance Analysis of Alternative Multi-Attribute Declustering Strategies

[3] Wayne D Smith, Intel Corporation, TPC-W : Benchmarking An Ecommerce Solution

[4] TPC Benchmark W (Web Commerce) Specification

6. ACKNOWLEDGEMENT
Special thanks go to Shahram Ghandeharizadeh for his time and effort in discussing the topic.
 a-m n-z A-M N-Z	

0-10

0-20

K

45

21-40

Client

41-60

60-∞

Messagesize

cpuspeed

Nwspeed

SIMPLE_MSG

SMALL

BIG

SMALL

4

80

4000

MEDIUM

1

8

400

BIG

1

1

40

MEDIUM

800

80

8

Transfer

Time

Messagesize

(m sec)

Start coordinate in 1st dimension

 2nd dimension

∞

6

4

23

60-∞

41-60

21-40

0-20

 a-m n-z A-M N-Z	

Small

Medium

Big

Small

1350

1950

2295

BIG

900

1300

1530

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

_1100341301

_1100344756

_1100341364

_1100341078

